Nonlinear Least-squares Estimation

نویسندگان

  • DAVID POLLARD
  • PETER RADCHENKO
چکیده

The paper uses empirical process techniques to study the asymptotics of the least-squares estimator for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu’s illustrates the use of the new theorems, leading to a normal approximation to the least-squares estimator with unusual logarithmic rescalings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonics Estimation in Power Systems using a Fast Hybrid Algorithm

In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...

متن کامل

Function Based Nonlinear Least Squares and Application to Jelinski--Moranda Software Reliability Model

A function based nonlinear least squares estimation (FNLSE) method is proposed and investigated in parameter estimation of Jelinski–Moranda software reliability model. FNLSE extends the potential fitting functions of traditional least squares estimation (LSE), and takes the logarithm transformed nonlinear least squares estimation (LogLSE) as a special case. A novel power transformation function...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls

PURPOSE Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion paramet...

متن کامل

Least-Squares Parameter Estimation Algorithm for a Class of Input Nonlinear Systems

This paper studies least-squares parameter estimation algorithms for input nonlinear systems, including the input nonlinear controlled autoregressive IN-CAR model and the input nonlinear controlled autoregressive autoregressive moving average IN-CARARMA model. The basic idea is to obtain linear-in-parameters models by overparameterizing such nonlinear systems and to use the least-squares algori...

متن کامل

Volterra filter identification using penalized least squares

Volterra lters have been applied to many nonlinear system identiication problems. However, obtaining good lter estimates from short and/or noisy data records is a diicult task. We propose a penalized least squares estimation algorithm and derive appropriate penalizing functionals for Volterra lters. An example demonstrates that penalized least squares estimation can provide much more accurate l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004